
Web Audio API vs. native, closing the gap, take 2

[Extended Abstract]

Paul Adenot
Mozilla Corporation

padenot@mozilla.com

1. TOPICS
My keynote at the first Web Audio Conference at IRCAM

in Paris attempted to answer this question, but it was clearly
too early in the lifetime of the Web Audio API to have a
definitive answer.

The situation has evolved quite a lot, with the addition of
various features, not necessarily related to audio.

Shared memory, atomics, SIMD, Audio Worklets, WASM,
Web MIDI are some of the features that allow building pro-
grams that were impossible to write a few years ago.

This workshop will take a bottom up approach to writ-
ing high-performance applications with the Web Audio API,
with a definitive focus towards writing real-time audio code
in the context of a web application.

In doing this, the reasoning will follow a bottom-up ap-
proach: understanding the properties needed for a specific
system, and try to them map web platform constructs, with
a definitive focus on high-performance and white-box analy-
sis. Links to implementations themselves and the primitives
chosen will have an impact on the final quality of the result,
in terms of rendering speed, memory footprint, robustness,
and extensibility.

The limitations of the web platform will be discussed, with
possible workarounds, along with the multiple efforts are in
the works to remove those limitations.

1.1 Audio Worklets
AudioWorklet is the back-bone of the real-time audio pro-

cessing on the web, outside of the pre-defined AudioNode
that have been available for a long time. It provides a
way to execute script as part of the rendering of the audio,
with a corresponding main thread object that has custom
AudioParam exposed, along with a MessagePort.

The rendering thread side has the other end of the
MessagePort, and must have a method called process with

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2019, December 4–6, 2019, Trondheim, Norway.

c© 2019 Copyright held by the owner/author(s).

a number of parameters, where all the signal computations
happen. This method received the input of the node (if ap-
plicable), has a buffer where the output signal can be writ-
ten, and has a third buffer with the value of the AudioParam.

1.2 WASM
WASM (Web Assembly) plays a very important role in

moving towards native-like performances, because it allows
using a language that does not use a garbage collector. Be-
cause the audio latencies on modern platforms are very low,
blocking the audio rendering thread, even what seems to be
short periods of time, is problematic.

Additionally, it executes most of the time much faster
than JavaScript, and allows authoring the signal processing
algorithm in languages that are better suited to the task at
hand (C++, Rust, Faust, etc.).

1.3 Shared memory
Shared memory is now available on the web, with the

object SharedArrayBuffer. It can be transfered via a
MessagePort, and then its content can be mutated racily
on multiple threads. Shared memory is a powerful tool,
but authors should have a certain discipline when using it.
Special care must be taken when using it, from a software
engineering but also performance standpoint.

This construct has quite a few security implications, that
will be quickly discussed, and good practices for deployment
of programs using shared memory will be provided.

1.4 Web Workers
Web Worker opens the door to multi-thread computing

and concurrency. This construct has been available for a
long time on the web platform, but it has been made more
powerful recently thanks to the availability of shared mem-
ory.

This construct will be looked at from an operating sys-
tem perspective, to understand in which circumstances it is
possible and feasible to offload some processing to a Web
Worker, and why.

1.5 Atomics
Atomics, along with ‘SharedArrayBuffer‘, allow implement-

ing lock and wait-free algorithms on the web platform, that
are essential for audio. In particular, the wait-free single-
producer single-consumer ring-buffer (the bread and butter
of audio programming), will be investigated.

https://padenot.github.io/wac-14-keynote/


1.6 SIMD
SIMD (Single Instruction Multiple Data) is a way to op-

timize computation, on a single thread, via operating on
multiple scalar values at once. Often, algorithms need to be
tweaked to make efficient use of SIMD. A couple approaches
useful to deal with the specifics of audio algorithm will be
explained.

1.7 Web MIDI
Web MIDI is essential to access external hardware: control

surfaces, keyboard for input, analog synthesizers and other
drum machine on the output. Special care must be taken
when integrating Web MIDI and the Web Audio API, in
particular when it comes to timing.

2. SYNOPSIS
A straightforward signal processing algorithm has been

chosen for illustration purposes, and a number of signal pro-
cessing primitives are provided in languages that are suited
to the task at hand. The first task is to have a working ef-
fect, by implementing the glue code, compiling the result to
WASM, and to write the JavaScript code to load the WASM
module in an AudioWorklet.

The effect is now working but no controls are provided.
Control of the effect via either AudioParams or shared mem-
ory and atomics is implemented, along with potential op-
timizations via SIMD, and performance measurements per-
formed. A discussion starts on what contributes to high-
performance algorithms and on how to measure performance
of a real-time algorithm on the web platform and in general,
based on the findings of the group.

Control via Web MIDI or other means (OSC using Web-
Sockets or WebRTC) to integrate with other systems will
be implemented. Packaging into a standard format (Web
Audio Modules) is discussed.

With a sort of gap analysis, the participants that have
prior knowledge developing native audio processing algo-
rithms are reflect on what the web platform provides, and
what is missing. Possible solutions are explored, with point-
ers to existing web platform efforts (discussions, events, is-
sues opened on specifications, other specifications, etc.).


	Topics
	Audio Worklets
	WASM
	Shared memory
	Web Workers
	Atomics
	SIMD
	Web MIDI

	Synopsis

