
Complex Rhythmic Structures with Beet.js

Ehsan Ziya

London, UK

ehsan.ziya@gmail.com

ABSTRACT
This paper describes Beet.js, a new Javascript library for
creating complex and layered rhythmical structures in the
browser using the Web Audio API.

Link to source: github.com/zya/beet.js
Link to demo page: zya.github.io/beet.js

Categories and Subject Descriptors
H.5.5 [Information Interfaces and Presentation]: Sound
and Music Computing; H.5.2 [Information Interfaces and

Presentation]: User Interfaces

Keywords
Web Audio API, Polyrhythm, Euclidean Rhythm, JavaScript,
Generative Music

1. INTRODUCTION
TheWeb Audio API[1] has introduced a wide range of new

opportunities for creating new musical experiences and more
importantly, delivering those experiences to a wide number
of audiences through the browser. Using the real-time client-
side audio rendering and synthesis capabilities provided by
the browser, music can now be delivered to browsers not as
traditional static audio files, but as set of assets, instructions
and rules that describe a dynamic musical system.

One of the aspects of creating dynamic musical systems
is rhythm. Beet.js [2] was written to provide a tool-set
for creating complex rhythmical structures in the browser
using the Web Audio API. The library uses a multi-layered
approach to sequencing where each layer operates indepen-
dently and can follow a di↵erent pattern, time signature and
speed. In addition, built-in methods for generating evenly
distributed patterns (Euclidean patterns)[3] and a simple
API for layering allow the users to generate complex rhyth-
mic structures that can be used for creating real-time gen-
erative and/or interactive musical experiences for the web.
The library was written with focus on providing a thin ab-
straction layer over sequencing and event scheduling as well
as pattern generation, but does not o↵er any sound gener-

Licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2016, April 4–6, 2016, Atlanta, USA.

c� 2016 Copyright held by the owner/author(s).

ation features. This will allow users to use Beet.js with
existing frameworks and libraries easily. In the next section
we will examine each of the features more in detail.

2. TECHNICAL OVERVIEW

2.1 Installation and Initialisation
Beet.js is Browserify [4] compatible and can be installed

using NPM [5] using the command below. To initialise an
instance of Beet.js, follow the code example below.

$ npm install beet.js

var Beet = require(’beet.js’);

var context = new AudioContext();

var beet = new Beet({

context: context,

tempo: 120 // in bpm

});

Listing 1: Beet.js Installation and Initialisation

2.2 Patterns
One of the main features of the library is pattern gener-

ation based on Bjorklund’s [6] equal distribution algorithm.
The algorithm solves the general problem of distributing n

pulses over m timing slots in the most even way possible, even
though n may not necessarily be an even divisor of m. For
example, it equally distributes 5 pulses over 9 timing slots
and generates the binary sequence: 101110111. In Figure 1,
you can see the visualisation of the pattern 5,9 on the left
and 9,13 on the right.

The algorithm was initially developed to be used with
spallation neutron source (SNS) [7] accelerators in nuclear
physics but Godfried Toussaint proved that the algorithm
can be used to generate a large family of rhythms found in
sub-Saharan African music and world-music in general [3].

Beet.js exposes a pattern method that returns a Pattern

object based on a number of pulses to be distributed over a
number of slots. The pattern object can later be used with
Layer objects to schedule events. This method uses a re-
cursive implementation of the Bjorklund algorithm that can
also be found as a separate library [8].

beet.pattern(5, 8); // returns 10101101 � 5 over 8

beet.pattern(2, 5); // returns 10100 � 2 over 5

beet.pattern(4); // returns 1111 � 4 over 4

Listing 2: Even Distribution Patterns based on the

Bjorklund algorithm [6]

github.com/zya/beet.js
zya.github.io/beet.js


Figure 1: (left) Euclidean rhythm (5, 9), (right) Eu-

clidean rhythm (9, 13)

There is also a method available on the pattern objects
to shift the sequence by any given number. This can be used
to create variations on each sequence.

var pattern = beet.pattern(5, 9); // 101110111

pattern.shift(1); // 011101111

var pattern2 = beet.pattern(1, 4); // 1000

pattern2.shift(3); // 0001

Listing 3: Pattern Shift

2.3 Layers
Layers are the main building blocks of Beet.js. Each

Layer object consists of a Pattern object and two callbacks:
one for pulses and one for the rest of the slots. For example
for the pattern 1010, the first callback will be invoked on 1s
and the second will be invoked on 0s. This feature allows
for more flexibility when creating rhythmic structures.

An instance of Layer object can be created using the
beet.layer method which takes a pattern and two callbacks
of which the second is optional. After creation, each layer
can be added or removed using beet.add and beet.remove

methods.

var pattern = beet.pattern(1, 4); // 1000

var layer = beet.layer(pattern, cbForPulses,

cbForRest);

beet.add(layer);

Listing 4: Layers and Callbacks

As mentioned before, one of the main features of Beet.js

is that each layer operates independently from other layers.
That is: each layer uses a separate worker thread for schedul-
ing events therefore can follow a di↵erent tempo than other
layers. This makes it possible to create evolving rhythmic
sequences using di↵erent layers with di↵erent lengths and
speeds.

// create first layer with tempo of 100 bpm

var pattern1 = beet.pattern(1, 4);

var layer1 = beet.layer(pattern, cb1);

layer1.tempo = 100;

beet.add(layer1);

// create a second layer with tempo of 80 bpm

var pattern2 = beet.pattern(5, 9);

var layer2 = beet.layer(pattern2, cb2);

layer2.tempo = 80;

beet.add(layer2);

beet.start(); // start beet

Listing 5: Independent Layers with Di↵erenet

Figure 2: Polyrhythm - 5s (left) over 4s (right)

Speeds

Using this feature, it is also possible to create polyrhythms
[9]. Figure 2 is a visualisation of a simple polyrhythmic
sequence (Listing 6) created using two layers with di↵erent
step counts.

var fours = beet.pattern(4); // 1111

var firstLayer = beet.layer(fours, foursCB);

var fives = beet.pattern(5); // 11111

var secondLayer = beet.layer(fives, fivesCB);

beet.add(firstLayer);

beet.add(secondLayer);

beet.start();

Listing 6: Polyrhythm - 5 over 4

2.4 Callbacks
As mentioned before, each Layer can have two callbacks.

The callback format is as shown on Listing 7. Each call-
back will be called with 3 parameters. time is the audio
time that can be used to schedule audio events. step is
the current step number for each callback which can be
used to determine application status, such as note changes
in the sequence. Finally, timeFromScheduled is a value in
seconds that can be used to schedule JS real-time events
such as animations synced to the audio events (Listing 7).
timeFromScheduled is calculated for each step by subtract-
ing time from context.currentTime [10].

These three parameters, in addition to the option to have
callbacks for on and off steps, provide a flexible tool-set for
creating complex rhythmic patterns.

function callback(time,step,timeFromScheduled) {

// schedule audio events using time

// use step number to determine application

state

setTimeout(function(){

// trigger some js event such as animation

// will be synced to the audio

}, timeFromScheduled ⇤ 1000);

}

Listing 7: Callback Format

3. CONCLUSIONS AND FUTURE WORK
The presented library provides a minimal and specialised

tool-set for musicians and developers to create complex and
dynamic rhythmic structures in the browser. The thin layer
of abstraction over Web Audio API that takes care of schedul-
ing events using a simple API and will make integration



with other libraries easily possible. The library makes use
of Chris Wilson’s [11] audio scheduling method and uses a
Web Worker [12] for each layer. This results in rock-solid
timing and prevents the audio timing to be interupted by
the page visibility.

For future work, the author is working on a draft for a
new feature set for Layer functionality whereby the user can
chain layers or group layers in a way that they will behave
as one. This will make it easier to handle larger amounts of
layers. One of the other features that are in the road-map
for Beet.js is swing [13] and the ability to add a human
feel to each layer. Future technical work may also include
further refinement of the API by exposing more adjustable
scheduling parameters such as look-ahead time.

Beet.js is available on Github and NPM under a MIT
license [2].

4. REFERENCES
[1] Web audio api.

http://webaudio.github.io/web-audio-api/. Accessed:
2015-10-10.

[2] Beet.js. http://github.com/zya/beet.js. Accessed:
2015-10-07.

[3] Godfried Toussaint. The euclidean algorithm
generates traditional musical rhythms.
http://ehess.modelisationsavoirs.fr/atiam/biblio/
Toussaint-BRIDGES2005.pdf, August 2005.

[4] Browserify. http://browserify.org/. Accessed:
2015-10-07.

[5] Node package manager. http://npm.org. Accessed:
2015-10-07.

[6] E. Bjorklund. The theory of rep-rate pattern
generation in the sns timing system. https://ics-web.
sns.ornl.gov/timing/Rep-Rate%20Tech%20Note.pdf.
Accessed: 2015-10-07.

[7] Spallation neutron source. https:
//en.wikipedia.org/wiki/Spallation Neutron Source.
Accessed: 2015-10-07.

[8] Ehsan Ziya. Bjorklund javascript library.
https://github.com/zya/bjorklund. Accessed:
2015-10-07.

[9] Polyrhythms.
https://en.wikipedia.org/wiki/Polyrhythm. Accessed:
2015-10-07.

[10] Audiocontext.currenttime.
https://developer.mozilla.org/en-US/docs/Web/API/
AudioContext/currentTime. Accessed: 2014-10-08.

[11] A tale of two clocks - scheduling web audio with
precision. http://goo.gl/gJuBue. Accessed:
2014-10-08.

[12] Html5 web workers. http:
//www.w3schools.com/html/html5 webworkers.asp.
Accessed: 2014-10-08.

[13] Swing (jazz performance style). https://en.wikipedia.
org/wiki/Swing (jazz performance style). Accessed:
2015-10-07.

http://webaudio.github.io/web-audio-api/
http://github.com/zya/beet.js
http://ehess.modelisationsavoirs.fr/atiam/biblio/Toussaint-BRIDGES2005.pdf
http://ehess.modelisationsavoirs.fr/atiam/biblio/Toussaint-BRIDGES2005.pdf
http://browserify.org/
http://npm.org
https://ics-web.sns.ornl.gov/timing/Rep-Rate%20Tech%20Note.pdf
https://ics-web.sns.ornl.gov/timing/Rep-Rate%20Tech%20Note.pdf
https://en.wikipedia.org/wiki/Spallation_Neutron_Source
https://en.wikipedia.org/wiki/Spallation_Neutron_Source
https://github.com/zya/bjorklund
https://en.wikipedia.org/wiki/Polyrhythm
https://developer.mozilla.org/en-US/docs/Web/API/AudioContext/currentTime
https://developer.mozilla.org/en-US/docs/Web/API/AudioContext/currentTime
http://goo.gl/gJuBue
http://www.w3schools.com/html/html5_webworkers.asp
http://www.w3schools.com/html/html5_webworkers.asp
https://en.wikipedia.org/wiki/Swing_(jazz_performance_style)
https://en.wikipedia.org/wiki/Swing_(jazz_performance_style)

	Introduction
	Technical Overview
	Installation and Initialisation
	Patterns
	Layers
	Callbacks

	Conclusions and Future Work
	References

